skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Efentakis, Alexandros"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Shortest-path computation on graphs is one of the most well-studied problems in algorithmic theory. An aspect that has only recently attracted attention is the use of databases in combination with graph algorithms, so-called distance oracles, to compute shortest-path queries on large graphs. To this purpose, we propose a novel, efficient, pure-SQL framework for answering exact distance queries on large-scale graphs, implemented entirely on an open-source database engine. Our COLD framework (COmpressed Labels on the Database) may answer multiple distance queries (vertex-to-vertex, one-to-many, k-Nearest Neighbors, Reverse k-Nearest Neighbors, Reverse k-Farthest Neighbors and Top-k Range) not handled by previous methods, rendering it a complete database solution for a variety of practical large-scale graph applications. Our experimentation shows that COLD outperforms existing approaches (including popular graph databases) in terms of query time and efficiency, while requiring significantly less storage space than these methods. 
    more » « less